Abstract
Twisted 2D-flat band materials host exotic quantum phenomena and novel moiré patterns, showing immense promise for advanced spintronic and quantum applications. Here, we evaluate the nanostructure-activity relationship in twisted bilayer graphene by modeling it under the scanning electrochemical cell microscopy setup to resolve its spatial moiré domains. We solve the steady state ion transport inside a 3D nanopipette to isolate the current response at AA and AB domains. Interfacial reaction rates are obtained from a modified Marcus-Hush-Chidsey theory combining input from a tight binding model that describes the electronic structure of bilayer graphene. High rates of redox exchange are observed at the AA domains, an effect that reduces with diminished flat bands or a larger cross-sectional area of the nanopipette. Using voltammograms, we identify an optimal voltage that maximizes the current difference between the domains. Our study lays down the framework to electrochemically capture prominent features of the band structure that arise from spatial domains and deformations in 2D flat-band materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.