Abstract

The foundation for many solar energy uses as well as economic and environmental concerns is global solar irradiation information. However, due to solar irradiation and measurement variations, reliable worldwide statistics on solar irradiation are frequently impossible or challenging to acquire. In addition, more precise forecasts of solar irradiation play an increasingly important role in electric energy planning and management due to integrating photovoltaic solar systems into power networks. Hence, this paper proposes a new hybrid model for 1-h ahead solar irradiation forecasting called LGC-GMDH (local gravitational clustering-group method of data handling). The novel LGC-GMDH model is based on local clustering that adequately captures the underlying features of the solar irradiation time series. Each cluster is then forecasted using the GMDH method, which is a self-organized system capable of handling very complicated nonlinear problems. Finally, these local forecasts are reconstructed in order to obtain the global forecast. Comparative study between the proposed model and the traditional individual models such as backpropagation neural network (BP), supporting vector machines (SVM), long short-term memory (LTSM), and hybrid models such as BP-MLP, RNN-MLP, LSTM-MLP hybrid wavelet packet decomposition (WPD), convolutional neural network (CNN) with LSTM-MLP, and ANFIS clustering shows that the proposed model overcomes conventional model deficiencies and achieves more precise predicting outcome.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.