Abstract

The FDA-approved anthelmintic flubendazole has shown potential to be repositioned to treat cancer and dry macular degeneration; however, its poor water solubility limits its use. Amorphous solid dispersions may overcome this challenge, but the balance of excipients may impact the preparation method and drug release. The purpose of this study was to evaluate the influence of adjuvants and drug loading on the development of an amorphous solid dispersion of flubendazole-copovidone by hot-melt extrusion. The drug, copovidone, and adjuvants (magnesium stearate and hydroxypropyl cellulose) mixtures were statistically designed, and the process was performed in a twin-screw extruder. The study showed that flubendazole and copovidone mixtures were highly extrudable, except when drug loading was high (>40%). Furthermore, magnesium stearate positively impacted the extrusion and was more effective than hydroxypropyl cellulose. The extruded materials were evaluated by modulated differential scanning calorimetry and X-ray powder diffraction, obtaining positive amorphization and physical stability results. Pair distribution function analysis indicated the presence of drug-rich domains with medium-range order structure and no evidence of polymer-drug interaction. All extrudates presented faster dissolution (HCl, pH 1.2) than pure flubendazole, and both adjuvants had a notable influence on the dissolution rate. In conclusion, hot-melt extrusion may be a viable option to obtain stable flubendazole:copovidone amorphous dispersions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call