Abstract
The immune composition of solid tumors is typically inferred from biomarkers, such as histologic and molecular classifications, somatic mutational burden, and PD-L1 expression. However, the extent to which these biomarkers predict the immune landscape in gastric adenocarcinoma-an aggressive cancer often linked to chronic inflammation-remains poorly understood. We leveraged high-dimensional spectral cytometry to generate a comprehensive single-cell immune landscape of tumors, normal tissue, and lymph nodes from patients in the Western Hemisphere with gastric adenocarcinoma. The immune composition of gastric tumors could not be predicted by traditional metrics such as tumor histology, molecular classification, mutational burden, or PD-L1 expression via IHC. Instead, our findings revealed that innate immune surveillance within tumors could be anticipated by the immune profile of the normal gastric mucosa. Additionally, distinct T-cell states in the lymph nodes were linked to the accumulation of activated and memory-like CD8+ tumor-infiltrating lymphocytes (TILs). Unbiased re-classification of patients based on tumor-specific immune infiltrate generated four distinct subtypes with varying immune compositions. Tumors with a T-cell-dominant immune subtype, which spanned TCGA molecular subtypes, were exclusively associated with superior responses to immunotherapy. Parallel analysis of metastatic gastric cancer patients treated with immune checkpoint blockade showed that patients who responded to immunotherapy had a pre-treatment tumor composition that corresponded to a T-cell-dominant immune subtype from our analysis. Taken together, this work identifies key host-specific factors associated with intratumoral immune composition in gastric cancer and offers an immunological classification system that can effectively identify patients likely to benefit from immune-based therapies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have