Abstract

Context: The interaction of plasma motions and magnetic fields is an important mechanism, which drives solar activity in all its facets. For example, photospheric flows are responsible for the advection of magnetic flux, the redistribution of flux during the decay of sunspots, and the built-up of magnetic shear in flaring active regions. Aims: Systematic studies based on G-band data from the Japanese Hinode mission provide the means to gather statistical properties of horizontal flow fields. This facilitates comparative studies of solar features, e.g., G-band bright points, magnetic knots, pores, and sunspots at various stages of evolution and in distinct magnetic environments, thus, enhancing our understanding of the dynamic Sun. Methods: We adapted Local Correlation Tracking (LCT) to measure horizontal flow fields based on G-band images obtained with the Solar Optical Telescope on board Hinode. In total about 200 time-series with a duration between 1-16 h and a cadence between 15-90 s were analyzed. Selecting both a high-cadence (dt = 15 s) and a long-duration (dT = 16 h) time-series enabled us to optimize and validate the LCT input parameters, hence, ensuring a robust, reliable, uniform, and accurate processing of a huge data volume. Results: The LCT algorithm produces best results for G-band images having a cadence of 60-90 s. If the cadence is lower, the velocity of slowly moving features will not be reliably detected. If the cadence is higher, the scene on the Sun will have evolved too much to bear any resemblance with the earlier situation. Consequently, in both instances horizontal proper motions are underestimated. The most reliable and yet detailed flow maps are produced using a Gaussian kernel with a size of 2560 km x 2560 km and a full-width-at-half-maximum (FWHM) of 1200 km (corresponding to the size of a typical granule) as sampling window.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.