Abstract
Time-dependent magneto-hydrodynamic simulations of active region coronal magnetic field require the underlying photospheric magnetic footpoint velocities. The minimum energy fit (MEF) is a new velocity inversion technique to infer the photospheric magnetic footpoint velocities using a pair of vector magnetograms, introduced by Longcope (2004). The MEF selects the smallest overall flow from several consistent flows by minimizing an energy functional. The inferred horizontal and vertical flow fields by the MEF can be further constrained by incorporating the partial or imperfect velocity information obtained through independent means. This hybrid method is expected to give a velocity close to the true magnetic footpoint velocity. Here, we demonstrate that a combination of the MEF, the local correlation tracking (LCT) and Doppler velocity is capable of inferring the velocity close to the photospheric flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.