Abstract

Abstract In this paper, a general model of nonlinear systems with distributed delays is studied. Chen’s system can be derived from this model with the weak kernel. After the local stability is analyzed by using the Routh–Hurwitz criterion, Hopf bifurcation is studied, where the direction and the stability of the bifurcating periodic solutions are determined by using the normal form theory and the center manifold theorem. Some numerical simulations for justifying the theoretical analysis are also presented. Chaotic behavior of Chen’s system with the strong kernel is also found through numerical simulation, in which some waveform diagrams, phase portraits, and bifurcation plots are presented and analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.