Abstract

A general two-neuron model with distributed delays is studied in this paper. Its local linear stability is analyzed by using the Routh–Hurwitz criterion. If the mean delay is used as a bifurcation parameter, we prove that Hopf bifurcation occurs for a weak kernel. This means that a family of periodic solutions bifurcates from the equilibrium when the bifurcation parameter exceeds a critical value. The direction and stability of the bifurcating periodic solutions are determined by the normal form theory and the center manifold theorem. Some numerical simulations for justifying the theoretical analysis are also given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.