Abstract

Hydrogen abstraction from 1-substituted cyclohexa-2,5-diene-1-carboxylic acids containing linear, branched and cyclic alkyl substituents, as well as allyl, propargyl (prop-2-ynyl), cyanomethyl and benzyl substituents, has been studied by EPR spectroscopy. For each carboxylic acid, EPR spectra of the corresponding cyclohexadienyl radicals were observed at lower temperatures, followed by spectra due to ejected carbon-centred radicals at higher temperatures. Rate constants, for release of the carbon-centred radicals from the cyclohexadienyl radicals, were determined from radical concentration measurements for the above range of substituents. The rate of cyclohexadienyl radical dissociation increased with branching in the 1-alkyl substituent and with electron delocalisation in the ejected carbon-centred radical; 3,5- and 2,6-dimethyl-substitution of the cyclohexadienyl ring led to reductions in the dissociation rate constants. Rate data for abstraction of bisallylic hydrogens from the cyclohexadienyl acids were also obtained for ethyl, n-propyl and isopropyl radicals. These results indicated a sharp drop in the rate of hydrogen abstraction as the degree of branching in the attacking radical increased. Small decreases in the hydrogen abstraction rate constants were observed for cyclohexadienes containing CO2R substituents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.