Abstract

Patterns of nucleotide substitution at orthologous loci were examined between three genomes of Ehrlichia ruminantium, the causative agent of heartwater disease of ruminants. The most recent common ancestor of two genomes (Erwe and Erwo) belonging to the Welgevonden strain was estimated to have occurred 26,500–57,000 years ago, while the most recent common ancestor of these two genomes and the Erga genome (Gardel strain) was estimated to have occurred 2.1–4.7 million years ago. The search for genes showing extremely high values of the number of synonymous substitutions per site was used to identify genes involved in past homologous recombination. The most striking case involved the map1 gene, encoding major antigenic protein-1; evidence for homologous recombination is consistent with previous phylogenetic analysis of map1 alleles. At this and certain other loci, homologous recombination may have contributed to the evolution of host–pathogen interactions. In addition, comparison of the patterns of synonymous and nonsynonymous substitution provided evidence for positive selection favoring a high level of amino acid change between the Welgevonden and Gardel strains at a locus of unknown function (designated Erum4340 in the Erwo genome).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.