Abstract
Let C be a semidualizing module for a commutative ring R. It is shown that the [Formula: see text]-injective dimension has the ability to detect the regularity of R as well as the [Formula: see text]-projective dimension. It is proved that if D is dualizing for a Noetherian ring R such that id R(D) = n < ∞, then [Formula: see text] for every flat R-module F. This extends the result due to Enochs and Jenda. Finally, over a Noetherian ring R, it is shown that if M is a pure submodule of an R-module N, then [Formula: see text]. This generalizes the result of Enochs and Holm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.