Abstract
We investigate the notion of the $C$-projective dimension of a module, where $C$ is a semidualizing module. When $C=R$, this recovers the standard projective dimension. We show that three natural definitions of finite $C$-projective dimension agree, and investigate the relationship between relative cohomology modules and absolute cohomology modules in this setting. Finally, we prove several results that demonstrate the deep connections between modules of finite projective dimension and modules of finite $C$-projective dimension. In parallel, we develop the dual theory for injective dimension and $C$-injective dimension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.