Abstract

In this article, we investigate the change of rings theorems for the Gorenstein dimensions over arbitrary rings. Namely, by the use of the notion of strongly Gorenstein modules, we extend the well-known first, second, and third change of rings theorems for the classical projective and injective dimensions to the Gorenstein projective and injective dimensions, respectively. Each of the results established in this article for the Gorenstein projective dimension is a generalization of a G-dimension of a finitely generated module M over a noetherian ring R.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.