Abstract

The probability of finding a spherical "hole" of a given radius r contains crucial structural information about many-body systems. Such hole statistics, including the void conditional nearest-neighbor probability functions GV(r), have been well studied for hard-sphere fluids in d-dimensional Euclidean space Rd. However, little is known about these functions for hard-sphere crystals for values of r beyond the hard-sphere diameter, as large holes are extremely rare in crystal phases. To overcome these computational challenges, we introduce a biased-sampling scheme that accurately determines hole statistics for equilibrium hard spheres on ranges of r that far extend those that could be previously explored. We discover that GV(r) in crystal and hexatic states exhibits oscillations whose amplitudes increase rapidly with the packing fraction, which stands in contrast to GV(r) that monotonically increases with r for fluid states. The oscillations in GV(r) for 2D crystals are strongly correlated with the local orientational order metric in the vicinity of the holes, and variations in GV(r) for 3D states indicate a transition between tetrahedral and octahedral holes, demonstrating the power of GV(r) as a probe of local coordination geometry. To further study the statistics of interparticle spacing in hard-sphere systems, we compute the local packing fraction distribution f(ϕl) of Delaunay cells and find that, for d ≤ 3, the excess kurtosis of f(ϕl) switches signat a certain transitional global packing fraction. Our accurate methods to access hole statistics in hard-sphere crystals at the challenging intermediate length scales reported here can be applied to understand the important problem of solvation and hydrophobicity in water at such length scales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.