Abstract
We address the crystallization of monodisperse hard spheres in terms of the properties of finite- size crystalline clusters. By means of large scale event-driven Molecular Dynamics simulations, we study systems at different packing fractions {\phi} ranging from weakly supersaturated state points to glassy ones, covering different nucleation regimes. We find that such regimes also result in different properties of the crystalline clusters: compact clusters are formed in the classical-nucleation-theory regime ({\phi} \leq 0.54), while a crossover to fractal, ramified clusters is encountered upon increasing packing fraction ({\phi} \geq 0.56), where nucleation is more spinodal-like. We draw an analogy between macroscopic crystallization of our clusters and percolation of attractive systems to provide ideas on how the packing fraction influences the final structure of the macroscopic crystals. In our previous work (Phys. Rev. Lett., 106, 215701, 2011), we have demonstrated how crystallization from a glass (at {\phi} > 0.58) happens via a gradual (many-step) mechanism: in this paper we show how the mechanism of gradual growth seems to hold also in super-saturated systems just above freezing showing that static properties of clusters are not much affected by dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.