Abstract

In this paper, we provide a method to solve the Cauchy problem of systems of quasi‐linear parabolic equations, such systems can be transformed to the systems of linear parabolic equations with variable coefficients via the hodograph transformations. Our approach to solve the linear systems with variable coefficients is to use their fundamental solutions, which are constructed by using the Lie's symmetry method. In consequence, we can derive explicit solutions to the Cauchy problem of the quasi‐linear systems in terms of the solutions of the linear systems and the hodograph transformations relating to the quasi‐linear and the linear systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.