Abstract
In this paper, the governing differential equation of a beam with axial force is studied using the Lie symmetry method. Considering the inhomogeneous beam and non-uniform axial load, the governing equation is a fourth-order linear partial differential equation with variable coefficients with no closed-form solution. We search for a favourable coordinate system where the governing equation has a simpler-form or a closed-form solution. A favourable coordinate transformation is found using the Lie transformation group method. The system of determining equations for the governing equation of a beam with non-uniform axial load is derived and then solved to find a favourable coordinate system dependent on the spatially variable stiffness, mass, and axial force. The class of non-uniform axially loaded beams which have a closed-form solution is determined. The fixed-free boundary condition is imposed to find the invariant closed-form solution. A comparison between the analytical solution derived by the Lie symmetry method and the numerical solution is presented. Lie symmetry analysis yields hitherto undiscovered closed-form solutions for non-uniform axially loaded beams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.