Abstract

This paper presents a high-throughput low-complexity four-parallel Reed-Solomon (RS) decoder for high-rate WPAN systems. Four-parallel processing is used to achieve 12-Gbps data throughput and low hardware complexity. Also, the proposed pipelined folded Degree-Computationless Modified Euclidean (fDCME) algorithm is used to implement the key equation solver (KES) block, which provides low hardware complexity for the RS decoder. The proposed four-parallel RS decoder is implemented 90-nm CMOS technology optimized for a 1.2V supply voltage. The implementation result shows that the proposed RS decoder can be operated at a clock frequency of 400MHz and has a data throughput 12.8-Gbps. The proposed four-parallel RS decoder architecture has high data processing rate and low hardware complexity. Therefore it can be applied in the FEC devices for next-generation high-rate WPAN systems with data rate of 10-Gbps and beyond.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call