Abstract

This paper presents an 8-bit 320 MS/s single-channel successive approximation register (SAR) analog-to-digital converter (ADC) with low power consumption. Through a procedure of splitting all the most significant bit (MSB) capacitors except the least significant bit (LSB) capacitor into two equal sub-capacitors and reusing the terminal capacitor, the average switching energy and total capacitance can be reduced by about 87 and 50% respectively compared to the conventional procedure. Meanwhile, high-speed operation can be achieved by using a novel SAR control logic featuring efficient hardware cost and small critical path delay. In addition, this paper analyzes how to obtain the value of the unit capacitance which exhibits trade-offs between conversion rate, power consumption and linearity performance. The SAR ADC is simulated in 65 nm CMOS technology. It can achieve 48.63 dB SNDR, 63.61 dB SFDR at a supply voltage of 1.2 V and sampling frequency of 320 MS/s for near-Nyquist input, consuming 2.59 mW of power and with a FoM of 37 fJ/conversion-step.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call