Abstract

A detailed and accurate fuel model fuel consumption model that reflects real-world fuel consumption is required as input for devising and executing a model policy for prospective regulatory tools. The fuel consumption model based on the vehicle-specific power (VSP) has rapidly become the primary development direction since the release of the Motor Vehicle Emissions Simulator (MOVES) model. However, fuel consumption cannot be accurately characterized under high-speed scenarios. This work develops two fuel consumption models for the light-duty (gasoline) vehicles that can better characterize fuel consumption for light-duty vehicles under high-speed scenarios. For model 1, the VSP of −5kW/ton is a crucial turning point. When VSP∈ [−30, −5] kW/ton, the fuel rate is only determined by speed. When VSP∈(−5, 30], the fuel rate will gradually increase with VSP, and the growth characteristics will vary with speed. Model 2 develops the new interpretations for VSP and forms the one-to-one correspondence between the fuel rate and the new VSP. The two models can separately improve the accuracy by 12.2% and 13.8% compared with the conventional model. The fuel factor differences become significant when speed is higher than 65 km/h, which are separately 30.66% and 28.13% higher than the conventional VSP model when the speed is 100 km/h. Further, the fuel factors of the two models for freeways are, respectively, 6.33% and 7.56% higher than the conventional VSP model, and the distinction for arterial, collector, and local street roads is not notable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call