Abstract
Transverse cracks in precast prestressed concrete (PPC) bridge deck girders cause a notable increase in strand stresses and adversely affect the cracked girder’s capacity and durability. This numerical study analyzes the impact of transverse cracks on the behavior of PPC bridge deck girders by relating the crack width to the residual capacity, stresses, and load rating of the cracked girders. A non-linear finite element (FE) model is developed to understand the behavior and predict the stresses in an in-service PPC bridge deck girder damaged by a transverse crack. The residual capacity and built-up stresses obtained from the FE model are used in the load rating analysis of the cracked PPC bridge deck girder. A parametric study is conducted to understand the effect of the influencing parameters, such as the girder geometry and material properties, on the damaged girder’s behavior. For an 838 mm × 914 mm PPC deck girder, the statistically significant parameters are found to be the span length ( L), strand diameter ( db), and skew angle ([Formula: see text]). From the numerical analysis of the in-service PPC bridge deck girder, the load rating is predicted to be governed by the capacity for the existing 0.25 mm crack. In the parametric study of the 838 mm × 914 mm PPC deck girder, the inventory rating factor of the prestressing strands in tension is predicted to decrease linearly for crack width up to 0.64 mm, while the capacity inventory rating factor is predicted to decrease by up to 73.8% for the crack width of 0.64 mm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.