Abstract

Large-scale numerical simulation carried out via high performance computing is proving to be an increasingly useful approach to understand crystal growth systems. However, increasing realism demands new approaches for describing phenomena important at several disparate length scales. Of special importance is the ability to represent three-dimensional and transient continuum transport (flows, heat and mass transfer), phase-change phenomena (thermodynamics and kinetics), and system design (such as furnace heat transfer during melt growth). A brief overview is presented of mathematical models and numerical algorithms employed to include such multi-scale effects. Sample results are presented for Bridgman crystal growth and solution crystal growth systems

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call