Abstract

Hardware-based neural networks (NNs) can provide a significant breakthrough in artificial intelligence applications due to their ability to extract features from unstructured data and learn from them. However, realizing complex NN models remains challenging because different tasks, such as feature extraction and classification, should be performed at different memory elements and arrays. This further increases the required number of memory arrays and chip size. Here, we propose a three-dimensional ferroelectric NAND (3D FeNAND) array for the area-efficient hardware implementation of NNs. Vector-matrix multiplication is successfully demonstrated using the integrated 3D FeNAND arrays, and excellent pattern classification is achieved. By allocating each array of vertical layers in 3D FeNAND as the hidden layer of NN, each layer can be used to perform different tasks, and the classification of color-mixed patterns is achieved. This work provides a practical strategy to realize high-performance and highly efficient NN systems by stacking computation components vertically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.