Abstract
Despite advancements in antiretroviral therapy (ART) suppressing HIV-1 replication, existing antiviral drugs pose limitations, including lifelong medication, frequent administration, side effects and viral resistance, necessitating novel HIV-1 treatment approaches. CD4, pivotal for HIV-1 entry, poses challenges for drug development due to neutralization and cytotoxicity concerns. Nevertheless, Ibalizumab, the sole approved CD4-specific antibody for HIV-1 treatment, reignites interest in exploring alternative anti-HIV targets, emphasizing CD4’s potential value for effective drug development. Here, we explore anti-CD4 nanobodies, particularly Nb457 from a CD4-immunized alpaca. Nb457 displays high potency and broad-spectrum activity against HIV-1, surpassing Ibalizumab’s efficacy. Strikingly, engineered trimeric Nb457 nanobodies achieve complete inhibition against live HIV-1, outperforming Ibalizumab and parental Nb457. Structural analysis unveils Nb457-induced CD4 conformational changes impeding viral entry. Notably, Nb457 demonstrates therapeutic efficacy in humanized female mouse models. Our findings highlight anti-CD4 nanobodies as promising HIV-1 therapeutics, with potential implications for advancing clinical treatment against this global health challenge.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have