Abstract

Highly porous amidoximed carbon nanofibers(AOCNFs), which were fabricated via a conventional electrospinning technique followed by chemically modification, impregnation-reduction and carbonization process, had been used for the immobilization of palladium nanoparticles(Pd NPs) catalyst. During the carbonization process, polystyrene( PS) was selectively decomposed from bicomponent fibers, generating porous fibers. Fourier transform infrared spectroscopy(FTIR) result revealed the functional groups on PAN-PS fibers(PAN=polyacrylonitrile), AOPAN-PS fibers and AOCNFs; scanning electron microscopy(SEM) was used to observe the morphology of all stages of nanofibers; transmission electron microscopy(TEM) result gave the structure of through-hole morphology clearly visible and the dispersion of Pd NPs on the surface of nanofibers; and X-ray photoelectron spectra(XPS) confirmed that Pd nanoparticles on the surface of AOCNFs was of the metallic state. Moreover, the as-prepared catalyst exhibited high catalytic activity and efficient recycle for Heck coupling reactions between iodobenzene and acrylates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call