Abstract
The dissolution of Mn-based oxides cathodes is an urgent issue, as it leads to electrochemically irreversible byproducts and, finally, battery failure. In this work, activated NiMn-LDHv nanosheets with H vacancies are proposed as the cathode material for durable zinc ion batteries. The H vacancies promote Mn2+ deposition by redistributing the electron density and building strong Mn-O bonds, as a result, endowing NiMn-LDHv with the ability of controllable back-deposition of Mn2+. It's verified that MnO2 is deposited on the NiMn-LHDv substrate during charging, the dissolution and the Zn2+/H+ co-intercalation of MnO2 have a combined contribution to the discharge capacity. The full battery with NiMn-LDHv cathode delivers rate capacity of 258 mAh g−1 at 0.3 A g−1, and even 90 mAh g−1 at 11.0 A g−1. Furthermore, the irreversible Mn-based byproducts are inhibited, resulting in durable cycling performance. After 2500 charge/discharge cycles, the initial capacity remains 91%. This work provides an important strategy to utilize Mn2+ efficiently and develop a robust Mn-based cathode, which could greatly prompt the practical application of aqueous zinc ion batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.