Abstract
In this study, to address the issue of solvent selection in the chemical modification of starch, a method was developed for the efficient esterification of waxy maize starch (WMS) using an acidic deep eutectic solvent composed of choline chloride and acetic acid (CCHAc-ADES). The impact of different mass fractions of CCHAc-ADES on the degree of substitution and reaction efficiency of lauric acid starch esters was explored. It was found that under the conditions of 70 wt% CCHAc-ADES, starch esters with the highest degree of substitution of 0.161 were successfully prepared, achieving an esterification efficiency of 79.63 %. 13C and 1H nuclear magnetic resonance spectroscopy, X-ray diffraction and gel permeation chromatography revealed that CCHAc-ADES acted within the surface voids of WMS particles without seriously damaging the WMS structure, making it a favorable solvent for chemical modification of WMS. By monitoring changes in the morphology, relative crystallinity, particle size, and hydrophobicity of esterified WMS in CCHAc-ADES, the formation mechanism of lauric acid starch esters was inferred, primarily related to the competitive hydrogen bonding of CCHAc-ADES with WMS. The method proposed in this study allows for the preparation of long-chain fatty acid starch esters without the use of any additional chemicals or enzymes, offering significant guidance for the application of deep eutectic solvents in green synthesis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have