Abstract

The direct synthesis of low sheet resistance graphene on glass can promote the applications of such intriguing hybrid materials in transparent electronics and energy-related fields. Chemical doping is efficient for tailoring the carrier concentration and the electronic properties of graphene that previously derived from metal substrates. Herein, we report the direct synthesis of 5 in. uniform nitrogen-doped (N-doped) graphene on the quartz glass through a designed low-pressure chemical vapor deposition (LPCVD) route. Ethanol and methylamine were selected respectively as precursor and dopant for acquiring predominantly graphitic-N-doped graphene. We reveal that by a precise control of growth temperature and thus the doping level the sheet resistance of graphene on glass can be as low as one-half that of nondoped graphene, accompanied by relative high crystal quality and transparency. Significantly, we demonstrate that this scalable, 5 in. uniform N-doped graphene glass can serve as excellent electrode materials for fabricating high performance electrochromic smart windows, featured with a much simplified device structure. This work should pave ways for the direct synthesis and application of the new type graphene-based hybrid material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.