Abstract
We propose a novel high-birefringence index-guiding photonic crystal fiber (PCF). This PCF is composed of a solid silica core and a cladding with two differently sized squeezed elliptical air-holes. The mode birefringence of a fundamental mode in such PCFs is analyzed numerically by the finite-element method. Numerical results reveal that an extraordinarily high modal birefringence at the excitation wavelength of λ=1550 nm, 2.6×10-2, is acquired. The contributions of the cladding with two different sizes of air-hole ellipticity, the center-to-center distance between the air-holes, and the the number of cladding rings as well as the confinement loss to the birefringence are systematically evaluated. The evolution of birefringence with the structural variations shows that our highly birefringent fiber can be designed in a controlled manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.