Abstract

Recently, silver nanowires (AgNWs) have attracted considerable interest for their potential application in flexible transparent conductive films (TCFs). One challenge for the commercialization of AgNW-based TCFs is the low conductivity and stability caused by the weak adhesion forces between the AgNWs and the substrate. Here, we report a highly bendable, conductive, and transparent AgNW film, which consists of an underlying poly(diallyldimethyl-ammonium chloride) (PDDA) and AgNW composite bottom layer and a top layer-by-layer (LbL) assembled graphene oxide (GO) and PDDA overcoating layer (OCL). We demonstrated that PDDA could increase the adhesion between the AgNW and the substrate to form a uniform AgNW network and could also serve to improve the stability of the GO OCL. Hence, a highly bendable, conductive, and transparent AgNW-PDDA-GO composite TCF on a poly(ethylene terephthalate) (PET) substrate with Rs ≈ 10 Ω/sq and T ≈ 91% could be made by an all-solution processable method at room temperature. In addition, our AgNW-PDDA-GO composite TCF is stable without degradation after exposure to H2S gas or sonication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.