Abstract
A method of integrating hybrid thin films of graphene nanosheets (GNSs) and silver nanoparticles (AgNps) by in situ chemical reduction to prepare transparent conductive films (TCFs) is studied. The surface functional groups of graphite oxide (GO) serve as nucleation sites of silver ions for adsorption of AgNps. To fabricate conductive films with high transmittance, polyurethane (PU) nanofibers are introduced to help construct two-dimensional conductive networks consisting of AgNps and GNSs (AgNps–GNSs). This method requires only a low percentage of conducting AgNps–GNSs covering the transparent substrate, thereby improving the transmittance. The flexible GNSs serve as nanoscale bridges between conductive AgNps and PU nanofibers, resulting in a highly flexible TCF. The optical transmittance can be further increased after melting the PU nanofibers at 100°C. A fused film obtained after electrospinning (ES) a PU solution for 120s and immersion in 0.05wt.% AgNp–GNS (5:1) solution has a surface resistance of 150Ω/sq and 85% light transmittance. Mechanical testing shows that AgNps–GNSs on flexible substrates yield excellent robustness. Thus, TCFs with a 3:1 ratio of AgNps:GNSs have high conductivity, good mechanical durability, and barely one order of magnitude increase of surface resistance when bent to an angle of 90°.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.