Abstract

The development of low-cost, high-efficiency catalysts for the hydrogen evolution reaction is important for hydrogen production. In this study we investigate hydrogen adsorption at the interfaces of C/BN hetero-nanotubes using first-principles density functional theory calculations. Substantial charge redistributions associated with states near the Fermi level occur at the interfaces. More importantly, such electronic modification can enhance hydrogen adsorption at the interfacial atoms. As a result, the adsorption free energies ΔG H* of hydrogen for the interfaces range from −0.26 to 0.30 eV, depending on hydrogen coverage. These values are much closer to zero than those for the basal plane, suggesting that the interfaces could be active sites for the hydrogen evolution reaction. The interfacial adsorption sites show a distinctive hybridization between the H s and C p orbitals, which accounts for the enhanced hydrogen adsorption at the interfaces. These findings have important implications for hydrogen energy applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.