Abstract

Ordered mesoporous carbons were synthesized with a soft-template approach and modified with a water and tetrahydrofuran mixture having a H 2O/THF molar ratio of 17:1 as potential adsorbent media for hydrogen storage. Hydrogen adsorption equilibrium on the carbon adsorbents was measured gravimetrically at 270 K and hydrogen pressures up to 163 bar. Enhanced hydrogen adsorption was observed on the carbon adsorbents doped with 0.5 wt.% and 0.75 wt.% of H 2O/THF due to the combined effects of hydrogen adsorption on the carbon surface and formation of a binary H 2–H 2O–THF clathrate. Hydrogen adsorption capacities on the carbon adsorbents doped with 0.5 wt.%, 0.75 wt.% of H 2O/THF, and the pure carbon at 270 K and 163 bar are 0.747 wt.%, 0.646 wt.% and 0.585 wt.%, respectively. The hydrogen adsorption isotherms on all the doped carbon adsorbents are of typical Type III and can be well correlated by the Freundlich equation. A desorption hysteresis loop was observed on the carbon adsorbents doped with 0.5 wt.% and 0.75 wt.% of H 2O/THF, which was probably caused by the pore size difference during the adsorption and desorption steps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.