Abstract

AbstractHigh-harmonic generation has been driving the development of attosecond science and sources. More recently, high-harmonic generation in solids has been adopted by other communities as a method to study material properties. However, so far high-harmonic generation has only been driven by classical light, despite theoretical proposals to do so with quantum states of light. Here we observe non-perturbative high-harmonic generation in solids driven by a macroscopic quantum state of light, a bright squeezed vacuum, which we generate in a single spatiotemporal mode. The process driven by a bright squeezed vacuum is considerably more efficient in the generation of high harmonics than classical light of the same mean intensity. Due to its broad photon-number distribution, covering states from 0 to 2 × 1013 photons per pulse, and strong subcycle electric field fluctuations, a bright squeezed vacuum gives access to free carrier dynamics within a much broader range of peak intensities than accessible with classical light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.