Abstract

We propose an intuitive method, called time-dependent population imaging (TDPI), to map the dynamical processes of high harmonic generation (HHG) in solids by solving the time-dependent Schr\"{o}dinger equation (TDSE). It is shown that the real-time dynamical characteristics of HHG in solids, such as the instantaneous photon energies of emitted harmonics, can be read directly from the energy-resolved population oscillations of electrons in the TDPIs. Meanwhile, the short and long trajectories of solid HHG are illustrated clearly from TDPI. By using the TDPI, we also investigate the effects of carrier-envelope phase (CEP) in few-cycle pulses and intuitively demonstrate the HHG dynamics driven by two-color fields. Our results show that the TDPI provides a powerful tool to study the ultrafast dynamics in strong fields for various laser-solid configurations and gain an insight into HHG processes in solids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call