Abstract

A full-band Monte Carlo simulation of the high-field electron transport in the ZnS phosphor layer of an alternating-current thin-film electroluminescent device is performed. The simulation includes a nonlocal empirical pseudopotential band structure for ZnS and the relevant scattering mechanisms for electrons in the first four conduction bands, including band-to-band impact ionization and impact excitation of Mn2+ luminescent centers. The steady-state electron energy distribution in the ZnS layer is computed for phosphor fields from 1 to 2 MV/cm. The simulation reveals a substantial fraction of electrons with energies in excess of the Mn2+ impact excitation threshold. The computed impact excitation yield for carriers transiting the phosphor layer exhibits an approximately linear increase with increasing phosphor field above threshold. The onset of Mn2+ impact excitation coincides with the onset of band-to-band impact ionization of electron-hole pairs which prevents electron runaway at high electric fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call