Abstract
We consider Gromov’s homological higher convexity for complements of tropical varieties, establishing it for complements of tropical hypersurfaces and curves, and for nonarchimedean amoebas of varieties that are complete intersections over the field of complex Puiseux series. Based on these results, we conjecture that the complement of a tropical variety has this higher convexity, and prove a weak form of this conjecture for the nonarchimedean amoeba of any variety over the complex Puiseux field. One of our main tools is Jonsson’s limit theorem for tropical varieties.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.