Abstract

The aim of this paper is to give a constructive proof of one of the basic theorems of tropical geometry: given a point on a tropical variety (defined using initial ideals), there exists a Puiseuxvalued “lift” of this point in the algebraic variety. This theorem is so fundamental because it justifies why a tropical variety (defined combinatorially using initial ideals) carries information about algebraic varieties: it is the image of an algebraic variety over the Puiseux series under the valuation map. We have implemented the “lifting algorithm” usingSingular and Gfan if the base field is ℚ. As a byproduct we get an algorithm to compute the Puiseux expansion of a space curve singularity in (K n+1, 0).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.