Abstract

The object of this paper is to present two algebraic results with straightforward proofs, which have interesting consequences in tropical geometry. We start with an identity for polynomials over the max-plus algebra, which shows that any polynomial divides a product of binomials. Interpreted in tropical geometry, any tropical variety W can be completed to a union of tropical primitives, i.e. single-face polyhedral complexes. In certain situations, a tropical variety W has a "reversal" variety, which together with W already yields the union of primitives; this phenomenon is explained in terms of a map defined on the algebraic structure, and yields a duality on tropical hypersurfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.