Abstract

Thickness uniformity of an AT-cut quartz crystal wafer is essential requirement for higher productivity of quartz resonator in the sense of reducing the frequency adjusting process after dicing the wafer. However, commercially available quartz crystal wafers typically have a thickness distribution of ±0.1%, which is induced in conventional mechanical fabrication processes, such as cutting with a wire saw, lapping and polishing. Furthermore, owing to the poor parallelism and the existence of subsurface damage, many spurious peaks, which deteriorate resonance characteristics, are observed in a resonant curve. To resolve these issues, we proposed a new damage-free finishing method to correct the thickness distribution of an AT-cut quartz crystal wafer by the numerically controlled scanning of a localized atmospheric pressure plasma. By applying a new finishing process, the thickness uniformity of a commercially available AT-cut quartz crystal wafer was improved to less than 50 nm level by applying one correcting process without any subsurface damage. Furthermore, applying of the pulse-modulated-plasma drastically decreased the correcting time of the thickness distribution without breaking of the quartz crystal wafer by the thermal stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.