Abstract

A high-efficiency crystalline silicon-based solar cell in the visible and near-infrared regions is introduced in this paper. A textured TiO2 layer grown on top of the active silicon layer and a back reflector with gratings are used to enhance the solar cell performance. The given structure is simulated using the finite difference time domain (FDTD) method to determine the solar cell’s performance. The simulation toolbox calculates the short circuit current density by solving Maxwell’s equation, and the open-circuit voltage will be calculated numerically according to the material parameters. Hence, each simulation process calculates the fill factor and power conversion efficiency numerically. The optimization of the crystalline silicon active layer thickness and the dimensions of the back reflector grating are given in this work. The grating period structure of the Al back reflector is covered with a graphene layer to improve the absorption of the solar cell, where the periodicity, height, and width of the gratings are optimized. Furthermore, the optimum height of the textured TiO2 layer is simulated to produce the maximum efficiency using light absorption and short circuit current density. In addition, plasmonic nanoparticles are distributed on the textured surface to enhance the light absorption, with different radii, with radius 50, 75, 100, and 125 nm. The absorbed light energy for different nanoparticle materials, Au, Ag, Al, and Cu, are simulated and compared to determine the best performance. The obtained short circuit current density is 61.9 ma/cm2, open-circuit voltage is 0.6 V, fill factor is 0.83, and the power conversion efficiency is 30.6%. The proposed crystalline silicon solar cell improves the short circuit current density by almost 89% and the power conversion efficiency by almost 34%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.