Abstract

Nadi-based disease diagnosis is a traditional art in Ayurvedic medicine that is an inquisitive yet not widely comprehended subject. A collection of higher dimensional features from a preprocessed Nadi dataset was extracted and analyzed to diagnose diabetes. The t-distributed Stochastic Neighbor Embedding was used to visualize the higher dimensional feature space in 2-D. The linear dimensionality reduction method of Principal Component Analysis and several linear and nonlinear classifiers were tested on the reduced feature space in identifying diabetes. The key outcomes of this paper are the ability to reduce the feature space by 73.33% while retaining a classification accuracy of 95.4%, identifying age as a compounding factor in diagnosis, and extracting the diabetes-sensitive features with eigenvalue loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.