Abstract

The shock tube technique was used to study the thermal decomposition of ozone, O3, with a view to using this as a thermal precursor of O-atoms at high temperatures. The formation of O-atoms was measured behind reflected shock waves by using atomic resonance absorption spectrometry (ARAS). The experiments span a T-range, 819 K ≤ T ≤ 1166 K, at pressures 0.13 bar ≤ P ≤ 0.6 bar. Unimolecular rate theory provides an excellent representation of the falloff characteristics from the present and literature data on ozone decomposition at high temperatures. The present decomposition study on ozone permits its usage as a thermal source for O-atoms allowing measurements for, O + CH3OC(O)OCH3 → OH + CH3OC(O)OCH2 [A]. Reflected shock tube experiments monitoring the formation and decay of O-atoms were performed on reaction A using mixtures of O3 and CH3OC(O)OCH3, (DMC), in Kr bath gas over the T-range, 862 K ≤ T ≤ 1167 K, and pressure range, 0.15 bar ≤ P ≤ 0.33 bar. A detailed model was used to fit the O-atom temporal profile to obtain experimental rate constants for reaction A. Rate constants from the present experiments for O + DMC can be represented by the Arrhenius expression: kA(T) = 2.70 × 10(-11) exp(-2725 K/T) cm(3) molecule(-1) s(-1) (862-1167 K). Transition state theory calculations employing CCSD(T)/cc-pv∞z//M06-2X/cc-pvtz energetics and molecular properties for reaction A are in good agreement with the experimental rate constants. The theoretical rate constants can be well represented (to within ±10%) over the 500-2000 K temperature range by: kA(T) = 1.87 × 10(-20)T(2.924) exp(-2338 K/T) cm(3) molecule(-1) s(-1). The present study represents the first experimental measurement and theoretical study on this bimolecular reaction which is of relevance to the high temperature oxidation of DMC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call