Abstract

The present work gives a systematic study on the high temperature and high strain-rate deformation behaviors of a two-phase α/β Cu-Zn-Sn-Al alloy, by combining the split Hopkinson bar experiments and microstructural investigations. The results show that under high strain-rate, both the dislocation slip and deformation twins within the α phase contribute to the plastic strengthening of Cu-Zn-An-Al alloy, resulting in the strain-rate-hardening effect. As the deformation temperature increases, the shapes of the stress-strain curves are mainly influenced by the temperature-softening effect and the dynamic recrystallization of the α phase. Finally, material constants regarding the strain-rate-hardening and temperature-softening effects are determined, based on the Johnson-Cook constitutive model. The results show that compared with other metallic materials, the present Cu-Zn-Sn-Al alloy has a relatively stronger strain-rate-hardening effect and weaker temperature-softening effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call