Abstract

There are currently very few studies on the high strain-rate properties of Mg alloys with multi-layer composite textures under dynamic loading. In present study, a multi-layer composite textured AZ31B Mg alloy plate was fabricated using the asymmetric twin-roll casting process. The high strain-rate (∼103 s−1) deformation behaviors of the AZ31B plate along the normal direction (ND) were investigated using split-Hopkinson pressure bar technique. The microstructural evolution and deformation mechanism were analyzed by optical microscopy, scanning electron microscopy, X-ray diffraction, and transmission electron microscopy methods. The experimental results show that the mechanical behaviors exhibit a power-law hardening response under high strain-rate deformation. The flow stress generally increases with increasing strain rate, whereas the strain-hardening rate decreases with increasing strain. An interesting feature is that the maximum flow stress at high strain rates is much lower than that at its corresponding quasi-static counterpart. Microstructure analysis demonstrates that the characteristic layered texture and microstructure along the ND determine its mechanical behavior. The plastic deformation is mainly controlled by the basal-type texture, where the predominant deformation mechanism is dislocation slip. Dynamic recrystallization (DRX) occurred unevenly in the material during dynamic deformation, resulting in a moderate increase in ductility. The fracture behaviors change from brittle fracture to ductile fracture as the strain rate increases. The energy absorption capacity is therefore enhanced due to the occurrence of both DRX and the brittle–ductile transition at high strain rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.