Abstract

Diamond holds the highest figure-of-merits among all the known semiconductors for next-generation electronic devices far beyond the performance of conventional semiconductor silicon. To realize diamond integrated circuits, both n- and p-channel conductivity are required for the development of diamond complementary metal-oxide-semiconductor (CMOS) devices, as those established for semiconductor silicon. However, diamond CMOS has never been achieved due to the challenge in n-type channel MOS field-effect transistors (MOSFETs). Here, electronic-grade phosphorus-doped n-type diamond epilayer with an atomically flat surface based on step-flow nucleation mode is fabricated. Consequently, n-channel diamond MOSFETs are demonstrated. The n-type diamond MOSFETs exhibit a high field-effect mobility around 150cm2V-1 s-1 at 573K, which is the highest among all the n-channel MOSFETs based on wide-bandgap semiconductors. This work enables the development of energy-efficient and high-reliability CMOS integrated circuits for high-power electronics, integrated spintronics, and extreme sensors under harsh environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call