Abstract
We report a universal approach for the utilization of nanoparticles on inexpensive, high surface area carbon substrates in aqueous applications. We immobilized gold nanoparticles from aqueous colloid on hydrophilic carbon fiber paper and assessed this electrode assembly in aqueous carbon dioxide reduction electrocatalysis. Uniform distributions of gold nanoparticles on carbon fibers and stable electrocatalytic current generation indicated that immobilization of gold nanoparticles on hydrophilic carbon fiber paper was successful. Surface analysis before and after electroreduction revealed that the detachment of citrate capping ligands enhanced the amount of exposed surface gold and concomitantly increased the CO-to-H2 ratio in subsequent CO2 reduction electrocatalysis. Systematic variations of ionomer overlayers controlled the ratio of produced CO and H2 towards useful syngas compositions and revealed mechanistic insights into catalyst microenvironments, to enhance CO selectivity. Our results demonstrate that hydrophilic carbon fiber paper is an excellent high surface area electrode substrate for the utilization of nanoparticulate electrocatalysts in aqueous electrolyte.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.