Abstract
We propose a high-speed growth based on noncontact crucible method for obtaining large ingots with a constant diameter. In this method, the Si melt used has a large low-temperature region in its central upper part to ensure Si crystal growth inside it. Therefore, this method has the possibility of attaining a high growth rate using a high cooling rate because the growth rate is determined by the rate of expansion of the low-temperature region in the Si melt. The horizontal and vertical growth rates in Si melts were experimentally determined. At a cooling rate of 0.4K/min, the horizontal growth rate reached 1.5mm/min in the <110> direction and 1.9mm/min in the <100> direction. These growth rates are higher than that of the cast method. The growth rate increased with the cooling rate. The vertical growth rate was determined to be 0.3–0.6mm/min, and it tended to increase with increasing depth of the Si melt. The diameter of an ingot remained constant during pulling due to a high cooling rate of 0.4K/min because the horizontal growth rate increased as the cooling rate increased and the melt temperature markedly decreased. An ingot with a constant diameter of 21cm and a height of 7cm was obtained inside a Si melt by the high speed growth using a crucible with 33cm diameter.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have