Abstract

A noncontact crucible method using conventional silica crucibles for reducing stress in Si bulk crystals is proposed. In this method, the Si melt used has a low-temperature region in its upper central part so that natural Si crystal growth occurs inside it. Compared with the conventional growth method, the present method has several merits such as the convex shape of the interface in the growth direction, the possibility of obtaining large ingots even with the use of a small crucible because of the growth in the large low-temperature region, and the small convection in the Si melt due to the existence of the low-temperature region. When using crucibles without Si3N4 coating, p-type Si single bulk crystals can grow inside the Si melt without touching the crucible wall. The single bulk crystals grown have low dislocation densities (on the order of 103cm−2). The diameters of the ingots obtained using a crucible with 30 or 33cm diameter are 21−22cm. The surface orientation of the cross section is (100). An n-type ingot with Σ3 twin grain boundaries is grown using a crucible without Si3N4 coating. The average minority carrier lifetime of a cross section is 82.8μs for the passivated surface of an n-type wafer, which is higher than those (7.3–16.0μs) in the case of p-type wafers. A larger temperature reduction is required for the growth using crucibles without Si3N4 coating than that for the growth using crucibles with Si3N4 coating to obtain ingots with the same diameter. A crystal diameter, as large as 72% of the crucible diameter is obtained for the p-type single bulk crystal grown using crucibles without Si3N4 coating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.