Abstract
Connectionless routed networks, built atop high-speed communication medium, require cryptographic algorithms capable of out-of-order keystream generation and high throughput. Binary tree based stream ciphers, of which Leviathan is an example, are capable of meeting both of these requirements. We investigate high-speed architectures for the binary tree traversal and show that the traversal approaches discussed can be extended to m-ary tree of height h. Of the two architectures presented, the pipeline architecture computes keystream at uniform rate and the parallel architecture bounds the worst-case variance in the time period between computations of consecutive output key words, which form the keystream. The design and implementation of Leviathan keystream generator based on the pipeline architecture for binary tree traversal are presented. We show that it is possible to achieve keystream generation rates approaching 1 Gbps with the pipeline architecture. The design was implemented in two parts, the keysetup and the keystream pipeline, targeting commercially available Xilinx XC2V4000 and XC2V3000 FPGAs. The keystream pipeline implementation operated at frequency of 50 MHz and occupied 6864 slices. The results were verified performing the timing simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.